Structure-property relationship and emerging applications of nano- and micro-sized fillers reinforced sialon composites: a review

Author:

Ogunbiyi OlugbengaORCID,Jamiru Tamba,Adekoya Gbolahan Joseph,Rominiyi Azeez Lawan

Abstract

AbstractOxonitridoaluminosilicates (SiAlON) are renowned in advanced ceramics for their exceptional properties: high temperature stability, excellent oxidation resistance, and good wear resistance. Incorporating micro- and nano-sized fillers into SiAlON matrices enhances their properties, yielding SiAlON composite materials with superior mechanical, tribological, and thermal characteristics. This review examines fabrication techniques for producing SiAlON micro/nanocomposites and the structure-property relationships governing their performance across different phase compositions (β, α, X, and O-phases). A comprehensive literature review scrutinized fabrication techniques and structure-property relationships from various databases and scholarly articles. Although SiAlON composites with micro/nano inclusions hold promise across applications, understanding their fabrication processes, structure-property relationships, and potential applications in different fields is crucial. The review highlights diverse fabrication techniques for SiAlON micro/nanocomposites and provides insights into their structure-property relationships. Additionally, emerging applications in structural domains, cutting tools, coatings, corrosion protection, solar cells, LEDs, biomedical realms, and filtration membranes are discussed. This review is a valuable resource for researchers and engineers interested in designing SiAlON products tailored for sophisticated applications. It emphasizes understanding fabrication processes and structure-property relationships to unlock SiAlON-based materials' full potential across industries.

Funder

Tshwane University of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3