A Novel Mutual-Coupling Dipole Model Considering the Interactions between Particles

Author:

Kang YongqiangORCID,Zhang Jialin,Shi Zhipeng,Pu Xuhong,Li ShuaibingORCID,Li Hongwei

Abstract

The interactions between two or more particles and the calculation of the local electric field are widely applied in many fields, such as those of insulation, biology, medicine, and microfluidics. The dipole approximation model, which is a classical electric field calculation method, has been widely used in many fields to solve for the local electric field in a multi-particle system, but it does not consider the interactions between particles; as a result, it is easily limited by the calculation situation, and it generates a large calculation error when the distance between particles is small. Based on the physical essence of an interaction between two particles, a concept of the mutual-coupling dipole moment caused by the interactions between particles is defined for the first time. Moreover, by combining the calculation process of the dipole moment and the electric field of polarization, a novel mutual-coupling dipole model considering the interactions between particles is proposed in this paper, and analytical expressions of the local electric field that consider the interaction between two particles are obtained, thus compensating for the large error in the electric field calculation caused by the dipole approximation model when the distance between particles is small. In this paper, a mutual-coupling dipole model considering particle interactions is proposed. This model can effectively reflect the interactions between particles when the distance between particles D/R is less than 0.6 and accurately calculate the local electric fields of the particles. These results can be effectively used to investigate the interactions between particles and the control of particles in electric fields in many fields, such as in the calculation of the insulation of mixed dielectrics, the microscopic transport of medicines, the control of bio-cells and micro-fluids in electric fields, and environmental governance.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference29 articles.

1. Current Status of Study on the Effects of Airborne Particles on DC Corona Discharge: Space-charge Effect of Particles;Lu;Proc. CSEE,2015

2. Research on electrostatic shielding characteristics of electrostatic precipitator

3. Research on the charging of fine particulate in different electric fields;Luo;Proc. CSEE,2014

4. Analysis of Charge-Carrier Transport Characteristics of Transformer Oil-Based Nanofluids;Dong;Trans. China Electrotech. Soc.,2020

5. Ionic-surfactant-mediated electro-dewetting for digital microfluidics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3