Island‐Like Heterogeneous Interface Generating Tandem Toroidal Built‐In Electric Field for Efficient Potassium Ions Diffusion

Author:

Liu Jingyi1,Zhang Luwei1,Wang Kaihang1,Jiang Chao1,Zhang Chunfang2,Wang Ning1ORCID

Affiliation:

1. Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China

2. College of Chemistry and Materials Science Hebei University Baoding 071002 P. R. China

Abstract

AbstractFor large‐size potassium accommodation, heterostructure usually suffers severe delamination and exfoliation at the interfaces due to different volume expansion of two‐phase during charge/discharge process, resulting in the deconstruction of heterostructures and shortened lifespan of batteries. Here, an innovative strategy is proposed through constructing a microscopic heterostructure system containing copper quantum dots (Cu QDs) highly dispersed in the triphenyl‐substituted triazine graphdiyne (TPTG) substrates (TPTG@CuQDs) to solve this problem. The copper quantum dots are uniformly anchored on TPTG substrates, generating a myriad of island‐like heterogeneous structures, together with tandem toroidal built‐in electric field (BIEF) between every micro heterointerface. The island‐like heterostructure endows both benefits of exposed contact interface and robust architecture. Generated tandem toroidal BIEF provides efficient transport pathways with lower energy barriers, reducing the diffusion resistance and facilitating the reaction kinetics of potassium ions. When used as anode, the TPTG@CuQDs exhibit highly reversible capacity and low‐capacity degradation (≈0.01% over 5560 cycles at 1 A g−1). Moreover, the TPTG@CuQDs‐based full cell delivers an outstanding reversible capacity of ≈110 mAh g−1 over 800 cycles at 1 A g−1. This quantum‐scale heterointerface construction strategy offers a new approach toward stable heterostructure design for the application of metal ion batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3