Electrochemical Properties of Niobium Coating for Biomedical Application

Author:

Shi Kunyu,Zhang Yi,Zhang Jinzhong,Xie Zonghan

Abstract

The preparation of the Nb coating was performed on the bare Ti–6Al–4V alloy using the double glow discharge plasma technique. It was characterized that the Nb coating exhibited a face centered cubic (fcc) crystal structure and a pronounced (200) preferred orientation. The SEM micrograph of the cross section for the coating displayed dense microstructure with a thickness of approximately 18 µm. The critical load (Lc) of the coating was determined to be about 83.5 N by the scratch tests. The electrochemical corrosion resistance of the coating was examined in Ringer’s solution at 37 °C by a series of electrochemical techniques, including open-circuit potential (OCP), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and a Mott–Schottky analysis. As the result of the potentiodynamic polarization, the Nb coating possessed a more positive corrosion potential and lower corrosion current density than the Ti–6Al–4V substrate. EIS fitting date showed that the Nb coating always possessed a higher value of impedance and lower effective capacitance than those of the substrate during the five days of immersion testing. The main component of the passive film developed on the Nb coating was Nb2O5, confirmed by an X-ray photoelectron spectroscopy (XPS) analysis. A Mott–Schottky analysis demonstrated typical n-type semiconductor characteristics of the Nb coating, and both the donor density and flat band potential of the coating were lower than those of the substrate at all the given formation potential. These investigations demonstrate that the Nb coating can significantly improve the corrosion protection of uncoated Ti–6Al–4V and is thus a promising coating for the surface protection of bioimplants.

Funder

National Natural Science Foundation of China

Science Research Foundation for Wuhan Institute of Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3