Study on Corrosion Resistance and Biological Properties of the Double Glow Plasma Nb-Zr Biological Implantation Alloying Layers

Author:

Zhao Ke,Wu Hongyan,Xiao Changle,Dong Jieyang,Ren Junzhao,Peng ZhaoxiangORCID

Abstract

In order to improve the corrosion resistance of implant materials and understand the corrosion mechanisms, we prepared a biomedical Nb-Zr alloying layer on 316L stainless steel using double-layer glow plasma surface-alloying technology and investigated the effects of gas pressures on its surface structure, mechanical properties, and corrosion behavior. In particular, the surface states of the substrate and alloying layers were investigated using 3D confocal micrographs, the water contact angle, and UV reflectance, which aims to study the effect of the surface quality on corrosion resistance and discuss the corrosion mechanisms. The results show that the working pressure has an effect on the current density, the sputtering amount of the alloying elements, and the diffusion process of the alloying elements during glow discharge. The Nb-Zr alloying layer prepared under a pressure of 40 Pa had a uniform and dense surface structure, and the distribution was island-like. A Nb-Zr alloying layer with a thickness of 15 μm was successfully obtained, including the diffusion layer and the deposition layer. Simultaneously, the elements Nb and Zr were gradually distributed along the depth, and a high Nb concentration formed in the Nb-Zr alloying layer. The solid solution formed by Zr in the Nb layer significantly improved the microhardness and corrosion resistance of the substrate. The Nb-Zr alloying layer prepared under a pressure of 40 Pa had the lowest corrosion current density and excellent corrosion resistance, which originated from the passive film formed by the Nb-Zr alloying layer that could inhibit the invasion of corrosive ions and improve the corrosion resistance. In addition, the Nb-Zr alloying layer could promote cell proliferation during long-term use and had good biocompatibility. Our study provides an efficient, high-quality processing method for the surface modification of biomedical metallic materials to form thicker Nb-Zr alloying layers as a cost-effective alternative to bulk Nb-based alloys.

Funder

“Science and Technology Innovation 2025” Major Special Project of Ningbo

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3