The effect of annealing temperature and immersion time on the active-passive dissolution of biomedical Ti70Zr20Nb7.5Ta2.5 alloy in Ringer’s solution

Author:

Boraei Nobl F. El1,Ibrahim Magdy A.M.1,Rehim Sayed S. Abd El1,Elshamy Ibrahim H.1

Affiliation:

1. Ain Shams University

Abstract

Abstract Because of their superior biocompatibility, chemical stability, and mechanical strength, Ti and Ti - based alloys are commonly utilized in orthopaedic dentistry. In Ringers solution (RS), the corrosion behavior of the Ti70Zr20Nb7.5Ta2.5 (T70Z20N7.5T2.5) alloy was examined as an alternative potential material for Ti and Ti6Al4V (T6A4V) in medical applications. The corrosion resistance was evaluated utilizing potentiodynamic polarization curves (PPCs), electrochemical impedance spectroscopy (EIS), and open circuit potential techniques (OCP), supplemented by XRD and SEM surface analysis. The T70Z20N7.5T2.5 alloy has the highest resistance to corrosion since it has the most stable passive state in addition to the lowest corrosion current (Icorr) and the highest corrosion potential (Ecorr) in comparison with that of T6A4V and Ti. Furthermore, it was also looked at how different annealing temperatures (600, 800, and 1000 ºC) and immersion times (one, two, and three weeks) affected the corrosion behaviour of T70Z20N7.5T2.5. In comparison to the other samples, the T70Z20N7.5T2.5 alloy annealed at 800 ºC demonstrated superior resistance to corrosion (the lowest Icorr and Ipass). While that annealed at 1000 ºC has the lowest resistance to corrosion (highest Icorr and Ipass) as a result of the passive layer dissolution. The same results are confirmed using the OCP measurements. The passive film is composed of an inner and outer oxide layer, according to the EIS measurements. Meanwhile, the PPCs data demonstrates that the resistance to corrosion of the alloy is higher without immersion than it is with immersion and for a shorter immersion time. These results entirely agree with those of the EIS and OCP measurements of the alloy at the same immersion times. It was found that the T70Z20N7.5T2.5 system consisted of α and β phases. An X-ray structural study indicated a mixture of body centred –cubic β-Ti and hexagonal close-packed α-Ti (main phase, with a grain size of about 5.35 nm). Therefore, among all the materials evaluated in this work, the T70Z20N7.5T2.5 alloy can be considered a promising material suitable for use as a biomaterial.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3