Theoretical Study of the Competition Mechanism of Alloying Elements in L12-(Nix1Crx2Cox3)3Al Precipitates

Author:

Liu Yu12,Wang Lijun1,Zhao Juangang1,Wang Zhipeng3,Fan Touwen1,Zhang Ruizhi1,Wu Yuanzhi1,Zhou Xiangjun1,Zhou Jie1,Tang Pingying4

Affiliation:

1. Research Institute of Automobile Parts Technology, Hunan Institute of Technology, Hengyang 421002, China

2. College of Materials Science and Engineering, Hunan University, Changsha 410082, China

3. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China

4. Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Nanning Normal University, Nanning 530023, China

Abstract

The impact of variations in the content of single alloying element on the properties of alloy materials has been extensively discussed, but the influence of this change on the content of multiple alloying elements in the alloy materials has been disregarded, as the performances of alloy materials should be determined by the collective influence of multiple alloying elements. To address the aforementioned issue, the present study conducted a comprehensive investigation into the impact of variations in the content of alloying elements, namely Ni, Cr, and Co, on the structural and mechanical properties of L12-(Nix1Crx2Cox3)3Al precipitates using the high-throughput first-principles calculations and the partial least squares (PLS) regression, and the competitive mechanism among these three elements was elucidated. The findings demonstrate that the same alloying element may exhibit opposite effects in both single element analysis and comprehensive multi-element analysis, for example, the effect of Ni element on elastic constant C11, and the influence of Cr element on Vickers hardness and yield strength. The reason for this is that the impact of the content of other two alloying elements is ignored in the single element analysis. Meanwhile, the Co element demonstrates a significant competitive advantage in the comparative analysis of three alloying elements for different physical properties. Therefore, the methodology proposed in this study will facilitate the elucidation of competition mechanisms among different alloy elements and offer a more robust guidance for experimental preparation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Scientific Research Fund of Hunan Provincial Education Department

Changsha Municipal Natural Science Foundation

Technological Innovation Projects of Hengyang

Scientific Research Project of Hunan Institute of Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3