Study on the Alloying Elements Competition Mechanism of Nix1Crx2Cox3Al15Ti10 Alloys Based on High-Throughput Computation and Numerical Analysis

Author:

Liu Yu12,Wang Lijun1,He Wenjie1,Liu Yunpeng1

Affiliation:

1. Research Institute of Automobile Parts Technology, Hunan Institute of Technology, Hengyang 421002, China

2. College of Materials Science and Engineering, Hunan University, Changsha 410082, China

Abstract

Previous studies on the physical properties of alloy materials often focus solely on analyzing the impact of individual alloying element content, overlooking the underlying mechanism behind the synergistic action of multiple alloying elements. Therefore, in this study, we propose a combination of high-throughput computation and numerical analysis to conduct single-element (SE) analysis and multi-element (ME) analysis on the internal relationships between alloying element content and physical properties for the multi-component Nix1Crx2Cox3Al15Ti10 alloys, aiming to elucidate the competition mechanism among the Ni, Cr, and Co elements. The analysis of SE reveals how the physical properties of alloys are affected by the content of each individual alloying element, and the ME analysis further unveils the underlying competitive relationships among multiple alloying elements. The order of competitive intensity for the formation of lattice constant is Cr > Co > Ni, whereas for the formation of elastic constants and elastic moduli it is Ni > Co > Cr. At the same time, there are contradictory conclusions, such as the SE analysis showing that the Ni content is positively correlated with elastic constant C11, while the ME analysis demonstrates that the Ni element produces a negative competitive direction. This outcome arises from the omission of considering the combined impacts of various alloying elements in SE analysis. Therefore, the ME analysis can compensate for the limitations of SE analysis, and the integration of these two analytical methods is more conducive to elucidating the competition mechanism among various alloying elements in shaping the physical properties of alloys, which provides a promising avenue for theoretical research.

Funder

Scientific Research Fund of Hunan Provincial Education Department

Changsha Municipal Natural Science Foundation

Technological Innovation Projects of Hengyang

Scientific Research Project of Hunan Institute of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3