Design and Molding of Thyroid Cartilage Prosthesis Based on 3D Printing Technology

Author:

Zhang GuoqingORCID,Li Junxin,Zhang Chengguang,Wang Anmin

Abstract

The modeling efficiency, matching, and biocompatibility are key factors affecting the surgical success of a personalized thyroid cartilage prosthesis. We performed three-dimensional reconstruction of a thyroid cartilage prosthesis by combining reverse and forward methods, and then completed the prosthesis design with total or partial resection using a parametric modeling method. Direct manufacturing was performed using selective laser melting (SLM) molding equipment and TC4 material. The structure of the completed implant unit was optimized. The results show good modeling effects for the thyroid cartilage prosthesis with either total or partial resection by the parametric modeling method. Good matching performance was achieved, with overlap suspension between the pillars that meets the requirements of SLM manufacturing. Additionally, the use of SLM molding to produce the thyroid cartilage prosthesis resulted in less powder adhesion on the surface and no obvious nodulation between the porous pillars, allowing the direct use of the prothesis after simple post-treatment. Overall, these results should facilitate the direct application of personalized implants.

Funder

Henan Provincial Science and Technology Project

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference22 articles.

1. Allogenic chondrocytes-polyglycolic acid compound for repair of thyroid cartilage defects;Qiao;Chin. J. Tissue Eng. Res.,2016

2. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report

3. New development of laser rapid forming and its application in high performance materials processing;Su;Chin. J. Nonferrous Met.,2013

4. 3D printing of multiple metallic materials via modified selective laser melting

5. Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3