Parametric Production of Prostheses Using the Additive Polymer Manufacturing Technology Multi Jet Fusion

Author:

Ráž Karel1ORCID,Chval Zdeněk1,Kemka Vladislav1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Regional Technological Institute, University of West Bohemia, Univerzitni 2732/8, 301 00 Plzen, Czech Republic

Abstract

This study aims to develop a procedure for the production of 3D-printed forearm prostheses (especially hard outer sockets). The production procedure is designed in the form of a parametric workflow (CAD model), which significantly speeds up the designing process of the prosthesis. This procedure is not fixedly dependent on the software (SW) equipment and is fully transferable into another SW environment. The use of these prostheses will significantly increase the comfort of their patients’ lives. It is possible to produce prostheses faster and in larger amounts and variants by the usage of additive technology. The input for the own production of the prosthesis is a model of the internal soft socket of the patient. This soft socket (soft bed) is made by a qualified prosthetist. A 3D-scanned CAD model is obtained afterward using the scanning method by an automatic laser projector. An editable, parametric external socket (modifiable in any CAD format) is generated from the obtained 3D scan using a special algorithmic model. This socket, after the necessary individual modifications, is transferred to 3D printing technology and produced using powder technology Multi Jet Fusion (HP MJF). The result of the designed and tested procedure is a quickly editable 3D-printed outer socket (main part of prosthesis), which is able to fully replace the current long-fiber composite solution. Production of current solutions is relatively time-consuming, and only one piece is produced in a given time. The newly designed technology eliminates this. This study summarized the possibilities of speeding up the production of forearm prostheses (but not only these) by creating a parametric CAD model that is applicable to different patients.

Funder

Grant Agency of the University of West Bohemia

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on recent advancements in additive manufacturing techniques;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3