The Use of Polyurethane Composites with Sensing Polymers as New Coating Materials for Surface Acoustic Wave-Based Chemical Sensors—Part I: Analysis of the Coating Results, Sensing Responses and Adhesion of the Coating Layers of Polyurethane–Polybutylmethacrylate Composites

Author:

Rapp Michael1,Voigt Achim1,Dirschka Marian1,Carvalho Mauro dos Santos de2

Affiliation:

1. Institute of Microstructure Technology, Karlsruhe Institute for Technology, 76344 Eggenstein-Leopoldshafen, Germany

2. Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil

Abstract

The sensing layers for surface acoustic wave-based (SAW) sensors are the main factor in defining the selectivity and reproducibility of the responses of the sensor systems. Among the materials used as sensing layers for SAW sensors, polymers present a wide range of advantages, from availability to a large choice of chemical-sensing environments. However, depending on the physical–chemical properties of the polymer, issues about the chemical and mechanical stability of the sensing layer have been reported that can compromise the application of sensor systems in the long-term. The sensor properties are defined basically by the properties of the coating material and the quality of the coating process. The strategy used to improve the properties of polymeric coating layers for SAW technology involved the use of polyurethane (PU) in combination with a second polymer that is responsible for the sensing properties of the resulting layer; this is obtained by a reproducible and robust coating procedure. In this first part of our research, we used polymer composites of different compositions of polybutylmetacrylate (PBMA) as the sensing polymer with polyurethane. The analysis of the coating (ultrasonic parameters), the relative sensor responses and the adhesion results for the PU–PBMA composites were determined. The ultrasonic analysis and the relative sensor responses showed very reproducible and precise results, indicating the reproducibility and robustness of the coating process. Accurate correlations between the results of the ultrasonic parameters due to the coating and the relative sensor responses for the organic analytes analyzed were obtained, showing a precise quantitative relationship between the results and the constitution of the composite coating materials. The composites show practically no significant sensor responses to water. The PU–PBMA composites substantially enhanced adhesion to the surface of the piezoelectric sensor element in comparison to the coating with pure PBMA, without loss of its sensing properties. Other PU–polymer composites will be presented in the future, as well as an analysis of the selectivity for the organic analytes for these types of coating materials.

Funder

KIT-Publication Fund of the Karlsruhe Institute of Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3