The Use of Polyurethane Composites with Sensing Polymers as New Coating Materials for Surface Acoustic Wave-Based Chemical Sensors—Part II: Polyurethane Composites with Polylaurylmetacrylate, Polyisobutene, and Poly(chlorotrifluoroethylene-co-vinylidene Fluoride): Coating Results, Relative Sensor Responses and Adhesion Analysis

Author:

Carvalho Mauro dos Santos de1,Rapp Michael2,Voigt Achim2,Dirschka Marian2

Affiliation:

1. Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos, 149 Bloco A, 4º Andar, SALA 408 Cidade Universitária, Rio de Janeiro CEP, Rio de Janeiro 21941-909, Brazil

2. Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Abstract

This work presents the application of the methodology for the sensitization of surface acoustic wave-based sensors (SAW), developed in the first part of this work. The strategy of the method is the obtention of sensing layers with tailored chemical environments by taking advantage of the wide variety of chemical composition of the organic polymers, which have been used as sensing polymers, and combining them with polyurethane (PU) to form polymeric composites that show enhanced properties as sensing materials for the SAW sensor technology. In the first part of this work, the ultrasonic and adhesion characterization was correlated to the sensor responses of PU-polybutylmethacrylate (PBMA) composites of different relative concentrations of the sensing polymer (PBMA) and PU. The resulting coating layers obtained with the PU polymer composites improved the chemical and mechanical properties of the sensing layer without interfering with the quality of their sensor responses in comparison to those with the pristine polymer as the sensing material. In this second part of this work, three new polyurethane polymeric composites were analyzed. The new sensing materials were produced using polylaurylmetacrylate (PLMA), polyisobutene (PIB), and poly(chlorotrifluoroethylene-co-vinylidene fluoride) (PCTFE) as the sensing polymers combined with PU. The results of the new PU polymer composites showed consequently different properties depending on the type of sensing polymer used, reproducing, however, the previous features achieved with PU and polybutylmetacrylate (PBMA) composites, like the improvements in the adhesion and the resistance against an organic solvent and preserving, in each case, the sensor response characteristic of each sensing polymer used, as was also observed for the PU-PBMA polymeric composites. The results obtained with the new sensing materials validated the strategy and confirmed its generalization as a very suitable methodology for the sensitization of SAW sensors, strongly indicating the applicability and reliability of the method, which makes possible the choice of virtually any chemical environments for the sensitization of SAW sensor systems.

Funder

KIT-Publication Fund of the Karlsruhe Institute of Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3