Application of Fragrance Microcapsules onto Cotton Fabric after Treatment with Oxygen and Nitrogen Plasma

Author:

Kert Mateja,Forte Tavčer Petra,Hladnik AlešORCID,Spasić Kosta,Puač NevenaORCID,Petrović Zoran Lj.,Gorjanc MarijaORCID

Abstract

Cotton fabric was exposed to low-pressure capacitively coupled plasma to enhance the adsorption and adhesion of fragrance microcapsules (FCM). Two plasma-forming gases, namely oxygen (O2) and nitrogen (N2), were investigated. The untreated and plasma-treated samples were investigated for their morphological changes by scanning electron microscopy (SEM), mechanical properties (breaking force, elongation, and flexural rigidity), and wicking properties. The cotton samples were functionalized with FCM and the effect of plasma pretreatment on the adsorption and adhesion of FCM was evaluated using SEM, air permeability, fragrance intensity of unwashed and washed cotton fabrics, and Fourier transform infrared spectroscopy (FTIR). The results show that the plasma containing either of the two gases increased the wicking of the cotton fabric and that the O2 plasma caused a slight etching of the fibers, which increased the tensile strength of the cotton fabric. Both plasma gases caused changes that allowed higher adsorption of FCM. However, the adhesion of FCM was higher on the cotton treated with N2 plasma, as evidenced by a strong fragrance of the functionalized fabric after repeated washing.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

MESTD of Republic of Serbia

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3