Adsorption of Fragrance Capsules onto Cellulose Nano- and Micro-Cellulose Fibers in Presence of Guar Biopolymers

Author:

Oikonomou Evdokia K.1ORCID,Berret Jean-François1ORCID

Affiliation:

1. Université de Paris, CNRS, Matière et Systèmes Complexes, 75013 Paris, France

Abstract

Fabric softeners are formulated to enhance textile softness and impart a pleasant scent. One of the most efficient technologies for controlled fragrance delivery onto fabrics involves encapsulating scent molecules in polymer capsules. Here, we investigate the adsorption of anionic fragrance capsules on cotton fabrics with the goal of reducing the reliance on palm-oil-derived surfactants. First, we employ 200 nm cellulose nanocrystals (CNC) as a reliable model for cotton fibers. CNC enables us to explore interactions among various softener components, including surfactants, guar biopolymers, and fragrances, using physical chemistry techniques applied to bulk dispersions. The primary objective is to elucidate the role of surfactant vesicles, the primary ingredient in textile conditioners, in the association between fragrance capsules and cotton. Secondly, we examine the influence of biopolymers present in a newly developed environmentally friendly softener on this association. Our findings demonstrate that anionic fragrance capsules are deposited onto cotton microfibers in the presence of either cationic surfactants or guar biopolymers, driven by electrostatic interactions. Scanning electron microscopy confirms capsule adsorption on textile fibers when these cationic ingredients are present. Understanding the interaction mechanisms between fragrance capsules and cotton fabrics, as well as the roles played by other softener components, can facilitate the design of more efficient and sustainable formulations.

Funder

Solvay

ANR

ImagoSeine facility

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3