Abstract
Herein, we report a chemi-resistive sensing method for the detection of formaldehyde (HCHO) gas. For this, α-MnO2 nanowires were synthesized hydrothermally and examined for ascertaining their chemical composition, crystal phase, morphology, purity, and vibrational properties. The XRD pattern confirmed the high crystallinity and purity of the α-MnO2 nanowires. FESEM images confirmed a random orientation and smooth-surfaced wire-shaped morphologies for as-synthesized α-MnO2 nanowires. Further, the synthesized nanowires with rounded tips had a uniform diameter throughout the length of the nanowires. The average diameter of the α-MnO2 nanowires was found to be 62.18 nm and the average length was ~2.0 μm. Further, at an optimized temperature of 300 °C, the fabricated HCHO sensor based on α-MnO2 nanowires demonstrated gas response, response, and recovery times of 19.37, 18, and 30 s, respectively.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献