Abstract
The aim of this work was to immobilize reduced graphene oxide (RGO) and titanium dioxide (TiO2) on the surface of selected fibrous structures. Textile fabrics made of cotton (CO) and polyamide (PA) were used as a carrier. The following modification methods were applied: coating for modification of PA and dip-coating for modification of CO. In the dip-coating method, no auxiliaries were used, which is a huge advantage. The RGO/TiO2 coated fabrics were characterized using several techniques: ultraviolet–visible (UV–VIS) spectroscopy, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The obtained results showed the immobilization of RGO and TiO2 on the fabrics. Raw fabrics absorb much less radiation than coated ones, which is associated with strong absorption of radiation by applied modifiers (RGO and TiO2). Photocatalytic activity of functionalized textiles was determined using aqueous phenol solutions. Phenol removal efficiency obtained for RGO/TiO2 coated CO and RGO/TiO2 coated PA was 51% and 46%, respectively. The hydroxyl radicals play a major role in the phenol photocatalytic degradation. The phenol removal efficiency in the fifth cycle was higher (about 14% and 8% for RGO/TiO2 coated CO and RGO/TiO2 coated PA, respectively) compared to the first cycle.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献