Two-dimensional carbon material incorporated and PDMS-coated conductive textile yarns for strain sensing

Author:

Islam G. M. Nazmul,Collie Stewart,Gould Maree,Ali M. AzamORCID

Abstract

AbstractIn recent years, innovative technology based upon conductive textile yarns has undergone rapid growth. Nanocomposite-based wearable strain sensors hold great promise for a variety of applications, but specifically for human body motion detection. However, improving the sensitivity of these strain sensors while maintaining their durability remains a challenge in this arena. In the present investigation, polydopamine-treated and two-dimensional nanostructured material, e.g., reduced graphene oxide (rGO)-coated conductive cotton and polyester yarns, was encapsulated using polydimethylsiloxane (PDMS) to develop robustly wash durable and mechanically stable conductive textile yarns. Flexibility and extensibility of all textile yarns of every stage were analyzed using texture analysis. The chemical interactions essential for measuring coating performance among all components were confirmed by Fourier transform infrared and scanning electron microscopy. The rGO-coated cotton and polyester yarns exhibited an extensibility of 11.77 and 73.59%, respectively. PDMS-coated conductive cotton and polyester yarns also showed an electrical resistance of 12.22 and 20.33 kΩ, respectively, after 10 washing cycles. The PDMS coating layer acted as a physical barrier against impairment of conductivity during washing. Finally, the mechanically stable and flexible conductive textile yarns were integrated into a knitted cotton glove and armband to create a highly stretchable and flexible textile-based strain sensor for measuring finger and elbow movement. Truly wearable garments able to record proprioceptive maps are critical for further developing this field of application.

Funder

University of Otago

Publisher

Springer Science and Business Media LLC

Subject

Colloid and Surface Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3