Viscoelastic Properties, Rutting Resistance, and Fatigue Resistance of Waste Wood-Based Biochar-Modified Asphalt

Author:

Zhang RanORCID,Wang Haoxiang,Ji Jie,Wang Hainian

Abstract

The purpose of this study is to explore the viscoelastic properties, rutting resistance, and fatigue resistance of waste wood-based biochar-modified asphalt. The biochar with 2%, 4%, and 8% mixing amounts and two kinds of particle size, 75–150 μm and <75 μm, were used as modifiers of petroleum asphalt. Meanwhile, in the control group, a graphite modifier with a particle size of 0–75 μm and mixing amount of 4% was used for comparison. Aged asphalts were obtained in the laboratory by the Rolling Thin Film Oven (RTFO) test and the Pressure Aging Vessel (PAV) test. The viscoelastic properties, rutting resistance, and fatigue resistance of biochar-modified asphalt were evaluated by phase angle, critical high temperature, and fatigue cracking index by the Dynamic Shear Rheometer (DSR) test. In addition, the micromorphology of biochar and graphite was compared and observed by using the scanning electron microscope (SEM). The results show that increasing the mixing amount of biochar gave a higher elastic property and significantly better rutting resistance of the modified asphalt at high temperature. Compared with graphite, the biochar has a rougher surface and more pores, which provides its higher specific surface area. Therefore, it is easier to bond with asphalt to form a skeleton network structure, then forming a more stable biochar–asphalt base structure. In this way, compared to graphite-modified asphalt, biochar-modified asphalt showed better resistance to rutting at high temperature, especially for the asphalt modified with biochar of small particle size. The critical high temperature T(G*/sinδ) of 4% Gd, 4% WD, and 4% Wd was 0.31 °C, 1.57 °C, and 2.92 °C higher than that of petroleum bitumen. In addition, the biochar asphalt modified with biochar of small particle size had significantly better fatigue cracking resistance than the asphalt modified with biochar of large particle size. The fatigue cracking indexes for 2% Wd, 4% Wd, and 8% Wd were 29.20%, 7.21%, and 37.19% lower by average than those for 2% WD, 4% WD, and 8% WD at 13–37 °C. Therefore, the waste wood biochar could be used as the modifier for petroleum asphalt. After the overall consideration, the biochar-modified asphalt with 2%–4% mixing amount and particle size less than 75 μm was recommended.

Funder

China Postdoctoral Science Foundation

Beijing Postdoctoral Research Foundation

The Fundamental Research Funds for Beijing University of Civil Engineering and Architecture

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3