Mechanical Performance of a Hot Mix Asphalt Modified with Biochar Obtained from Oil Palm Mesocarp Fiber

Author:

Chaves-Pabón Saieth Baudilio1ORCID,Rondón-Quintana Hugo Alexander2ORCID,Bastidas-Martínez Juan Gabriel3ORCID

Affiliation:

1. Programa de Ingeniería Civil, Facultad de Estudios a Distancia, Universidad Militar Nueva Granada, Cajicá 111321, Colombia

2. Facultad del Medio Ambiente y Recursos Naturales, Universidad Distrital Francisco José de Caldas, Bogotá 111711, Colombia

3. Facultad de Ingeniería, Universidad Piloto de Colombia, Bogotá 110231, Colombia

Abstract

A recently used material that shows environmental and technical advantages for use as an asphalt binder modifier is biochar (BC). Different biomasses can be converted into BC by pyrolysis. One agro-industrial biomass that is abundant in copious quantities is oil palm mesocarp fiber (OPMF) obtained from African palm cultivation. In the present study, the use of a BC obtained from OPMF (BC-OPMF) as a modifier of asphalt binder (AC type) to produce a hot mix asphalt (HMA) was evaluated. This type of BC has not been investigated or reported in the reference literature as a binder and/or asphalt mix modifier. Initially, AC was modified with BC in three ratios (BC/AC = 5, 10, and 15%, with respect to mass) to perform penetration, softening point, and rotational viscosity tests; rheological characterization at high and intermediate temperatures; and scanning electron microscope (SEM) visualization. Based on this experimental phase, BC/AC = 10% was chosen to manufacture the modified HMA. Resistance parameters under monotonic loading (stability—S, flow—F, S/F ratio of the Marshall test, and indirect tensile strength in dry—ITSD and wet—ITSC conditions) and cyclic loading (resilient modulus, permanent deformation, and fatigue resistance under stress-controlled conditions) were evaluated on the control HMA (AC unmodified) and the modified HMA. Additionally, the tensile strength ratio (TSR) was calculated to evaluate the resistance to moisture damage. Abrasion and raveling resistance were evaluated by performing Cantabro tests. BC-OPMF is shown to be a sustainable and promising material for modifying asphalt binders for those seeking to increase stiffness and rutting resistance in high-temperature climates, resistance to moisture damage, raveling, and fatigue without increasing the optimum asphalt binder content (OAC), changing the volumetric composition of the HMA or increasing the manufacturing and construction temperatures.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3