Total and Differential Sputtering Yields Explored by SRIM Simulations

Author:

Mahne Nastja,Čekada Miha,Panjan MatjažORCID

Abstract

Total sputtering yield and spatial distributions of sputtered atoms are important for numerous deposition techniques. We performed SRIM (Stopping and Range of Ions in Matter) simulations to analyze the total sputtering yield and angular distribution of sputtered atoms for a range of single-element target materials. The simulations were conducted for normal argon ion incidence in the 300–1200 eV range and at an oblique angle for selected ion energies. We examined the total and differential sputtering yields for the transition metals in the periods 4–6 and groups 4–6 (Ti, V, Cr; Zr, Nb, Mo; Hf, Ta, and W) and group 11 (Cu, Ag, and Au) of the periodic table, and other materials that are relevant to sputtering (B and C; Al and Si). For the transition metals, the total sputtering yield increases with the group of the periodic table. The elements in group 4 (i.e., Ti, Zr, and Hf) have the lowest sputtering yield, while the elements in group 11 (i.e., Cu, Ag, and Au) exhibit the highest sputtering yield. The angular distribution of the sputtered atoms shows a cosine distribution for the transition metal atoms. The angular distribution of the sputtered atoms for the oblique ion incidence is more asymmetric for the lower ion energies, while for the higher ion energies, the atoms are sputtered more symmetrically. The symmetry also depends on the group of the periodic table and the atomic mass of the target material. The elements in group 11 show the most symmetric distribution, while the elements in group 4 experience the most asymmetric distribution. Furthermore, in an individual group, the distribution becomes more symmetric with heavier target elements. We also examined in detail the influence of the surface binding energy, atomic mass, and ion energy on the total sputtering yield. These parameters were analyzed with regard to the simplified analytical formula for the total sputtering yield, which was derived by Sigmund. This formula was modified by introducing a power fitting parameter, which accounts for the non-linear sputtering yield dependence on the ion energy. The equation provided good estimates for the total sputtering yield of the transition metals that were sputtered by argon ions with energies up to 1200 eV.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference80 articles.

1. Sputtering by Particle Bombardment I: Physical Sputtering of Single-Element Solids;Behrisch,1981

2. Sputtering by Particle Bombardment III: Characteristics of Sputtered Particles, Technical Applications;Behrisch,1991

3. Influence of substrate rotation and target arrangement on the periodicity and uniformity of layered coatings

4. The influence of rotation during sputtering on the stoichiometry of TiAlN/CrNx multilayer coating

5. Computer modelling of magnetron discharges

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3