Degradation and In Vivo Response of Hydroxyapatite-Coated Mg Alloy

Author:

Husak Yevheniia,Solodovnyk Oleksandr,Yanovska Anna,Kozik Yevhenii,Liubchak Iryna,Ivchenko Viktoriia,Mishchenko Oleg,Zinchenko Yevhen,Kuznetsov Vladimir,Pogorielov MaksymORCID

Abstract

Nowadays there is a need for new generation of biodegradable implants, which should be able to stimulate the healing responses of injured tissues at the molecular level. Magnesium alloys attract great attention as perspective bone implants due to their biocompatibility, physical properties and ability to degrade completely under physiological conditions. The main purpose of this research was assessment of in vitro corrosion and surface morphology after short term in vivo implantation of Mg based implant covered by hydroxyapatite (HA). Mg alloys with the addition of Zr (0.65%), Al (1.85%) and Nd (1.25%) were used. In our work, we propose dipping method for hydroxyapatite coatings formation which has been shown to reduce the corrosion rate of magnesium implants in vivo. Simulated body fluid (SBF; pH 7.4) with ion concentrations approximately equal to those of human blood plasma resembling physiological conditions and citrate buffer with pH 5—simulating inflammation were selected as modelling environments for in vitro degradation test. The rod samples were implanted into the tibia bone of rats and after 1 day and 5 days of implantation were taken out to observe cells adhesion on surface samples. SEM was used to assess surface morphology after in vitro and in vivo tests. SBF solution causes some cracks on the surface of HA coatings, while citrate solution at pH 2 caused complete dissolving of the coating. The HA coating favoured cell adhesion and rapid fibrous tissue formation.

Funder

European Commission

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3