Affiliation:
1. Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China
2. School of Mechanical and Aerospace Engineering, Queen’s University, Belfast BT9 5AH, UK
3. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Abstract
This study investigated the effects of Zinc (Zn) content, specifically in the range of 1 wt.% to 7 wt.%, on the powder characteristics, porosity, microstructure, and corrosion behavior of Mg-xZn-0.2Mn alloys produced using selective laser melting (SLM). To evaluate the porosity of the printed parts and various powder attributes, such as size, circularity, void spaces between powders, and inherent imperfections, scanning electron microscopy (SEM) and optical microscopy (OM) were employed. The alloy microstructure, composition, and phase were examined using energy dispersive X-ray (SEM-EDX) and X-ray Diffraction (XRD). The corrosion resistance and degradation behavior were assessed through electrochemical corrosion tests and immersion tests in Hanks’ solution at 37.5 °C, respectively. Finally, OM and SEM-EDX were used to characterize the corrosion products. The findings of this study indicated that the powder size increased with Zn content, maintaining a 0.8 circularity. Powder defects were minimal, with occasional satellite particles. For the SLM-printed samples, it was evident that porosity characteristics could be influenced by Zn content. As Zn content increased, the pore fraction rose from 1.0% to 5.3%, and the pore size grew from 2.2 μm to 3.0 μm. All printed samples consisted of an α-Mg matrix. Additionally, a higher Zn content resulted in more distinct grain boundaries. Corrosion resistance decreased with Zn, leading to more pronounced localized corrosion after immersion in Hanks’ solution. Ca-P was found as white corrosion products on all samples.
Funder
Research Grants Council of the Hong Kong Special Administrative Region
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces