Numerical Investigation on the Effect of Electrical Parameters on the Discharge Characteristics of NS-SDBD

Author:

Liang Sijia12,Yu Yang12ORCID,Zheng Borui23,Mao Yuepeng2

Affiliation:

1. School of Aeronautics, Chongqing Jiaotong University, Chongqing 400074, China

2. Chongqing Key Laboratory of Green Aviation Energy and Power, The Green Aerotechnics Research Institute of Chongqing Jiaotong University, Chongqing 401120, China

3. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China

Abstract

There are numerous scientific and engineering fields where the surface dielectric barrier discharge driven by nanosecond pulses (NS-SDBD) has important applications. To improve its performance, more research is still needed on the effects of electrical parameters on the NS-SDBD actuator’s discharge characteristics. In this study, a two-dimensional numerical model based on 13 discharge particle chemical processes was constructed using a numerical simulation approach, producing findings for the NS-SDBD actuator’s voltage–current (V-A) characteristics, discharge profile, and spectrum analysis. Additionally, a comprehensive investigation into the trends and underlying mechanisms of the effects of the voltage amplitude, pulse width, rise time, and fall time parameters on the discharge behavior of the NS-SDBD actuator was carried out. The results show that higher voltage amplitudes increase the maximum current and electron density, which enhances the plasma excitation effect. The peak power deposition during the second discharge is also raised by longer pulse widths and rise times, whereas the total power deposition during the second discharge is decreased by longer fall times.

Funder

the research on high Reynolds number turbulent drag reduction method based on plasma suction pump, Science and Technology Research Project of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3