Abstract
A numerical simulation of a pulsed floating electrode dielectric barrier discharge (FE-DBD) at atmospheric pressure, used for melanoma cancer cell therapy, is performed using a plasma model in COMSOL Multiphysics software. Distributions of electron density, space charge, and electric field are presented at different instants of the pulsed argon discharge. Significant results related to the characteristics of the plasma device used, the inter-electrodes distance, and the power supply are obtained to improve the efficiency of FE-DBD apparatus for melanoma cancer cell treatment. The FE-DBD presents a higher sensitivity to short pulse durations, related to the accumulated charge over the dielectric barrier around the powered electrode. At higher applied voltage, more energy is injected into the discharge channel and an increase in electron density and electric consumed power is noted. Anticancer activity provided by the FE-DBD plasma is improved using a small interelectrode distance with a high electron emission coefficient and a high dielectric constant with a small dielectric thickness, allowing higher electron density, generating reactive species responsible for the apoptosis of tumor cells.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献