Affiliation:
1. Faculty of Engineering and Natural Sciences, Department of Metallurgy and Materials Engineering, Iskenderun Technical University, Iskenderun 31200, Hatay, Türkiye
2. Graduate School, Department of Metallurgy and Materials Engineering, Iskenderun Technical University, Iskenderun 31200, Hatay, Türkiye
Abstract
This study investigated the characteristic properties of aluminizing, boronizing, and boro-aluminizing coatings grown on Haynes 25 superalloys and their effects on the high-temperature wear behavior. The coating processes were conducted in a controlled atmosphere at 950 °C for 3 h. Characterization studies were performed using scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction analysis, nanoindentation testing, and high-temperature wear tests. It was determined that the thickness values of aluminide, boride, and boride–aluminide coatings were 140 ± 1.50 µm, 37.58 ± 2.85 µm, and 14.73 ± 1.71 µm, and their hardness values were 12.23 ± 0.9 GPa, 26.34 ± 2.33 GPa, and 23.46 ± 1.29 GPa, respectively. The hardness of the coatings resulted in reduced wear volume losses both at room temperature and at 500 °C. While the best wear resistance was obtained in the boronized sample at room temperature due to its high hardness, the best wear resistance at 500 °C was obtained in the boro-aluminized sample with the oxidation–reduction effect of Al content and the lubricating effect of B content in the boro-aluminide coating. This indicates that the presence of aluminum in boride layers improves the high-temperature wear resistance of boride coatings. The coated samples underwent abrasive wear at room temperature, whereas at 500 °C, the wear mechanism shifted to an oxidative-assisted adhesive wear mechanism.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献