Affiliation:
1. Institute of Intelligent Manufacturing and Smart Transportation, Suzhou City University, Suzhou 215104, China
2. School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
Abstract
An innovative antifouling composite coating comprising dopamine (DA), polyethyleneimine (PEI), and silica (SiO2) was developed through a straightforward and environmentally friendly approach. Initially, silica nanoparticles comodified with DA and PEI were meticulously deposited onto 304 stainless steel surfaces pretreated with dopamine to achieve a uniformly distributed nanocomposite surface. Comprehensive analytical techniques, including Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectrometry (XPS), field emission scanning electron microscopy (SEM), contact angle measurement (CA), and 3D optical profilometry, were employed to affirm the successful preparation of the silica nanocomposite coatings and the effective grafting of MAG II. The antibacterial and antibiofilm performance of the DA/PEI/SiO2-modified surface was rigorously assessed using Vibrio natriegens (V. natriegens), yielding compelling results indicating a substantial 51.4% reduction in biofilm formation on the SS-DA/PEI/SiO2 sample surfaces, coupled with an impressive 95.2% decrease in V. natriegens adhesion. This pioneering research introduces an innovative strategy for the development of antimicrobial surfaces with promising applications in medical devices, aquaculture, and related fields.
Funder
Industry-University Cooperation Collaborative Education Project of the Ministry of Education
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献