Large-scale fabrication of decoupling coatings with promising robustness and superhydrophobicity for antifouling, drag reduction, and organic photodegradation

Author:

Xin Lei,Li Hao,Gao Jian,Wang Zhongwei,Zhou KaiJie,Yu Sirong

Abstract

AbstractIt is still a challenge to achieve large-area preparation of robust superhydrophobic surfaces with strong mechanical stability. Here, a simple and low-cost method to prepare robust decoupling superhydrophobic coatings on aluminum (Al) alloys substrate has been presented. The superhydrophobicity and robustness of decoupling coatings are realized by structuring surfaces at two different length scales, with nanostructures for superhydrophobicity and microstructures for robustness. This prepared decoupling coating shows promising superhydrophobicity, with water contact angle (CA) of ∼158.4° and roll off angle (RA) of ∼3°. It also exhibits high repellency for impacting water droplets. Notably, the decoupling coating processes outstanding adhesion strength on the substrate after tape-peeling and cross-cut tests, also with promising wear resistantance after sandpaper abrasion and wear test. The friction coefficient of this decoupling coating is only ∼0.2. In addition, the robust decoupling superhydrophobic coating is applied to underwater buoyancy enhancement and fluid resistance reduction (drag reduction rate ∼30.09%). This decoupling superhydrophobic coating also displays promising self-cleaning and antifouling properties. Moreover, benefitting from the photocatalytic property of TiO2, this decoupling coating is also exploited for degrading organics to achieve seawater purification. This obtained decoupling superhydrophobic coating is expected to apply on other solids in marine fields, and the simple and eco-friendly method develops the potential practical application.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3