Stable Air Retention under Water on Artificial Salvinia Surfaces Enabled by the Air Spring Effect: The Importance of Geometrical and Surface‐Energy Barriers, and of the Air Spring Height

Author:

Speichermann‐Jägel Lutz12ORCID,Dullenkopf‐Beck Susanna12ORCID,Droll Robert12ORCID,Gandyra Daniel12,Barczewski Matthias12ORCID,Walheim Stefan123ORCID,Schimmel Thomas124ORCID

Affiliation:

1. Institute of Nanotechnology (INT) Karlsruhe Institute of Technology Herrmann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany

2. Institute of Applied Physics (APH) Karlsruhe Institute of Technology Wolfgang‐Gaede‐Str. 1 D‐76131 Karlsruhe Germany

3. Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology Herrmann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany

4. Materials Research Center for Energy Systems (MZE) Karlsruhe Institute of Technology Straße am Forum 7 D‐76131 Karlsruhe Germany

Abstract

AbstractSuperhydrophobic surfaces that can remain dry under water have a high potential as nontoxic antifouling coatings or for drag‐reducing ship coatings. The Salvinia effect leads to impressive stable air layers on underwater submerged floating plants Salvinia, decisively determined by the hydrophilic tips of the otherwise hydrophobic Salvinia hairs (Salvinia paradox). The water adheres to these hydrophilic tips, stabilizing the water–air interface. An even more important contribution to the stability of the air layer is provided by the air spring, which is formed by the air volume bound by the hydrophilic leaf edge and the leaf base. Using an artificial Salvinia model with hydrophobic pillars (syn‐trichomes), how the stability against pressure changes in water depends on the height of the artificial hair is systematically shown: a reduction of the air spring height from 3 mm to 300 µm increases the stability against negative pressure by 500% from 72 to 380 mbar. Thicker air layers react much more strongly when subjected to overpressure (1000 mbar). It is also shown that the presence of a boundary is essential for the function of the air spring: removing the limiting hydrophilic edge around the hydrophobic air spring reduces the stability against negative pressure by 300%.

Funder

European Commission

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3