Optimisation of Thiourea Concentration in a Decorative Copper Plating Acid Bath Based on Methanesulfonic Electrolyte

Author:

Fabbri LorenzoORCID,Giurlani WalterORCID,Mencherini Giulia,De Luca Antonio,Passaponti Maurizio,Piciollo Emanuele,Fontanesi ClaudioORCID,Caneschi AndreaORCID,Innocenti MassimoORCID

Abstract

The role of thiourea as an organic additive in the nucleation and growth mechanism was studied for copper deposition and its application in the decorative electroplating and fashion accessory industries. The bath was designed to reduce the environmental and ecological impacts using methanesulfonic acid as electrolyte as an alternative to alkaline cyanide baths. We evaluated the nucleation and growth mechanism of copper exploiting voltametric and chronoamperometric measurements with a brightener concentration ranging from 0 to 90 ppm. We used the Scharifker–Hills model to estimate the type of nucleation mechanism after progressive addition of thiourea. Scanning electron microscope was employed for surface analysis and morphological characterisation of the nuclei. We verified that progressive nucleation is a key step in the obtainment of a shiny and homogeneous copper film, but an excess of thiourea could cause parasitic adsorption reactions on the surface of the substrate. X-ray fluorescence spectroscopy was used for the thickness determination of the copper deposits and the electrodeposition efficiency correlated to thiourea concentration. Finally, the optimal concentration of thiourea was assessed to be 60 ppm for the used formulation of copper plating.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3