Improvement of the Mechanical Properties and Corrosion Resistance of CSS-42L Steel with a Novel TiAlMoNbW Nitrid Film Deposition

Author:

Yuan Lin,Wang Fangfang,Chen Haojie,Gao Ming,Zhang Hu

Abstract

In this work, a novel TiAlMoNbW high-entropy alloy (HEA) film and its corresponding nitrid (HEN) film were deposited on CSS-42L bearing steel by magnetron sputtering technology. The microstructure, microhardness, wear resistance, and corrosion resistance of the coated CSS-42L steel were systematically investigated. With the introduction of nitrogen, the crystal structure of TiAlMoNbW HEA film transformed from BCC into FCC. The microstructure of the deposited film became denser and was accompanied by lower surface roughness. The hardness of the nitride film was further increased from 11.43 to 25.7 GPa due to the formation of saturated metal nitride phases and the solid-solution strengthening of various elements. The tribological results showed that both TiAlMoNbW HEA and HEN films with excellent mechanical properties could improve the wear resistance of CSS-42L substrate, especially for the nitrid film, the mechanical properties of the film are significantly improved, resulting in a substantial reduction in the friction coefficient of about 22% and the wear rate of nearly 79%. In the electrochemical tests, both the TiAlMoNbW HEA and HEN-coated samples exhibited lower current densities and corrosion rates in 3.5 wt.% NaCl and 1 mol/L H2SO4 solutions. It was also noticed that the TiAlMoNbW nitrid film possessed a superior corrosion protection effect for CSS-42L steel.

Funder

Ningbo Natural Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3