A Study on the Improvement of the Fatigue Life of Bearings by Ultrasonic Nanocrystal Surface Modification Technology

Author:

Darisuren Shirmendagva,Park Jeong-Hyeon,Pyun Young-Sik,Amanov Auezhan

Abstract

In this study, the effects of ultrasonic nanocrystal surface modification (UNSM) technology on the fatigue life of needle roller bearings were investigated. The fatigue life of the untreated and UNSM-treated needle roller bearings was evaluated using a roller fatigue tester at various contact stress levels, under oil lubrication conditions. It was found that the fatigue life of the UNSM-treated needle roller bearing was extended by approximately 34.3% in comparison with the untreated one. The results of the surface roughness and surface hardness of the needle roller bearings before and after UNSM technology were compared and discussed in order to understand the role of UNSM technology in improving fatigue life. It was found that the application of UNSM technology to the needle roller bearings can improve their fatigue life by reducing the friction coefficient and increasing the wear resistance, which may be attributed to the reduction in surface roughness from 0.50 µm to 0.15 µm and also the increase in surface hardness from 58 HRC to 62 HRC.

Funder

Korea Technology and Information Promotion Agency for SMEs

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference11 articles.

1. Baerings: Basic Concept and Design Applications;Adams,2018

2. Ball and Roller Bearings: Theory, Design and Application;Brandlein,2013

3. Bearings Assessment of Performance;Pitlik,2015

4. Influence of microstructure on retained austenite and residual stress changes under rolling contact fatigue in mixed lubrication conditions

5. Reproduction of white etching cracks under rolling contact loading on thrust bearing and two-disc test rigs

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3