Mathematical Model for Early-Aged UHPFRC Compressive Strength Changes

Author:

Peng Xi12ORCID,Yang Qiuwei12,Cao Hongfei13,Wang Haozhen13

Affiliation:

1. School of Civil and Transportation Engineering, Ningbo University of Technology, Ningbo 315211, China

2. Engineering Research Center of Industrial Construction in Civil Engineering of Zhejiang, Ningbo University of Technology, Ningbo 315211, China

3. Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China

Abstract

Compressive strength is the most important mechanical index of ultra-high performance fiber-reinforced concrete (UHPFRC). The rule of changes in compressive strength in early-aged UHPFRC is of great significance to guide concrete curing, formwork removal, and prestress stretching. Therefore, it is very necessary to study an accurate mathematical model to describe the change in compressive strength of UHPFRC at an early age. For this purpose, a new mathematical model of compressive strength age is proposed in this work for predicting the long-term strength of UHPFRC according to a few test data from early-aged UHPFRC. This new model can overcome the shortcomings of the existing models, such as the exponential model, logarithmic model, and polynomial model. The proposed model is first demonstrated by using four groups of compressive strength test data compiled from previous research studies. Subsequently, an experiment of early-aged UHPFRC compressive strength was carried out to further verify the proposed mathematical model. The mixed proportion used in the UHPFRC compressive strength test was 10.87:0.82:1 (powder:steel fiber:water), and the design strength grade was 120 MPa. Based on the UHPFRC experimental data, it was shown that the average fitting error and standard deviation of the new model were about 10%~20% of that of the logarithmic model and the polynomial model. The proposed model can precisely predict the compressive strength of UHPFRC, with a determination coefficient (R2) of 0.9974. The research results show that the average fitting error and standard deviation of this new model were significantly reduced when compared to the existing models, and the predicted compressive strength by the new model on the 60th day is the closest to the actual design strength grade of concrete. The greatest advantage of the proposed method lies in its simple formula, fast implementation, and no need for complex mathematical operations. It has been shown that the proposed model is superior to the existing models due to its higher fitting accuracy and prediction accuracy, and it can be better used to predict the later strength of UHPFRC by using only a few compressive strength test data taken at the early age stage.

Funder

Natural Science Foundation of China

ational Key R&D Program of China

Zhejiang Public Welfare Technology Application Research Project

Major Special Science and Technology Project

Ningbo Natural Science Foundation Project

Natural Science Foundation of Zhejiang Province, China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3