Study on Soil Corrosion Resistance Reinforced with Reactive Powder Concrete in Chloride Environment

Author:

Wang Haozhen1,Cai Xin1,Peng Xi23ORCID,Wang Hui1,Wang Pengqian1

Affiliation:

1. School of Civil Engineering and Geographical Environment, Ningbo University, Ningbo 315000, China

2. School of Civil Transportation Engineering, Ningbo University of Technology, Ningbo 315211, China

3. Engineering Research Center of Industrial Construction in Civil Engineering of Zhejiang, Ningbo University of Technology, Ningbo 315048, China

Abstract

The accumulation of residue soil (generally composed of soil, residue, or mud consolidation) is one of the important causes of damage to the environment limiting urban development. At present, the recycling rate of residue soil in developed countries is as high as 90%, while in China it is less than 5%. In marine construction, reinforced concrete often suffers from corrosion, which leads to a decrease in the service life and durability of the structure. Reactive powder concrete (RPC) with high strength and good corrosion resistance can solve these problems. In order to efficiently dispose of residue soil, protect the environment, and promote urbanization development, this study uses residue soil as a raw material to replace some cement in RPC, and studies the corrosion resistance of it (under dry–wet alternations and freeze–thaw cycles). In this study, five types of reinforced RPC with different residue soil contents (0%, 2.5%, 5%, 7.5%, and 10%) are prepared. Firstly, the working performance of blank freshly mixed residue soil RPC slurry is analyzed. Then, the corrosion resistance of residue-soil-reinforced RPC under the dry–wet alternations with 3% NaCl and freeze–thaw cycles is analyzed through parameters such as mass loss rate, electrical resistivity, ultrasonic velocity, AC impedance spectroscopy, and Tafel. The results show that under the dry–wet alternations, when the residue soil content is 10%, the corrosion rate and corrosion depth of the residue-soil-reinforced RPC are the minimum, at 43,744.84 g/m2h and 640.22 mm/year, respectively. Under the freeze–thaw cycles, the corrosion rate and corrosion depth of the 10% residue soil content group are higher than that of the 5%, being 52,592.87 g/m2h and 769.71 mm/year, respectivley. Compared to the other groups, the reinforced RPC with 10% residue soil content shows good corrosion resistance in both dry–wet alternations and freeze–thaw cycles. Replacing some of the cement in RPC with residual soil to control the amount of residual soil at 10% of the total mass of RPC can effectively improve the corrosion resistance of residue-soil-reinforced RPC and maximize the consumption of residue soil. This plan provides a feasible method for residue soil treatment in the construction industry, while also providing inspiration for research on the corrosion resistance of concrete in marine buildings.

Funder

Natural Science Foundation of Zhejiang Province, China

Ningbo Natural Science Foundation Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference41 articles.

1. Microanalytical characterizations, mechanical strength and water resistance performance of solidified dredged sludge with industrial solid waste and architecture residue soil;Liu;Case Stud. Constr. Mater.,2022

2. Analysis of Resource Utilization of Construction Residue-Take Ningbo City as an Example;Xu;China Resour. Compr. Util.,2022

3. A review of China’s municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization;Ding;J. Clean. Prod.,2021

4. Status Quo of Resource Utilization of Urban Engineering Dregs;Song;China Resour. Compr. Util.,2021

5. Non-uniform Corrosion Mechanism and residual life forecast of marine engineering concrete reinforcement;Zhu;J. Eng. Res.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3