Research on the Mechanism of Surfactant Warm Mix Asphalt Additive-Based on Molecular Dynamics Simulation

Author:

Zhao PinhuiORCID,Dong Mingliang,Yang Yansheng,Shi Jingtao,Wang Junjie,Wu Wenxin,Zhao Xingchi,Zhou Xu,Wang Chenlong

Abstract

Warm mix asphalt (WMA) technology can bring certain environmental and technical benefits through reducing the temperature of production, paving, and compaction of mixture asphalt. Recent studies have shown that some WMA additives are able to reduce the temperature by increasing the lubricating properties of asphalt binder-based on the tribological theory, this paper studied the mechanism of adsorbing and lubricating film of base asphalt and WMA on the surface of stone by molecular dynamics (MD) simulation method, and the effect of surfactant WMA additive on the lubrication performance of the shear friction system of “stone–asphalt–stone”. The model of base asphalt lubricating film, including saturates, aromatics, resin and asphaltene, as well as the model of warm mix asphalt lubricating film containing imidazoline-type surfactant WMA (IMDL WMA) additive molecule, were established. The shear friction system of “stone–asphalt–stone” of base asphalt and warm mix asphalt was built on the basis of an asphalt lubrication film model and representative calcite model. The results show that the addition of IMDL WMA additive can effectively improve the lubricity of asphalt, reduce the shear stress of asphalt lubricating film, and increase the stability of asphalt film. The temperature in the WMA lubricating film rises, while the adsorption energy on the stone surface decreases with the increase of shear rate, indicating that the higher the shear rate is, the more unfavorable it is for the WMA lubricating film to wrap on the stone surface. In addition, the shear stress of the WMA lubricating film decreased with increasing temperature, while the shear stress of the base asphalt lubricating film increased first and then decreased, demonstrating that the compactability of the asphalt mixture did not improve linearly with the increase of temperature.

Funder

Natural Science Fund project in Shandong province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3