Controllable Preparation of Fe3O4@RF and Its Evolution to Yolk–Shell-Structured Fe@C Composite Microspheres with High Microwave Absorbing Performance

Author:

Li Xue,Lou Peng,Yang Longquan

Abstract

Fe3O4@RF microspheres with different phenolic (RF) layer thicknesses are prepared by adjusting the polymerization time. With the prepared Fe3O4@RF as the precursor, Fe@C composite microspheres with rattle-like morphology are obtained through one-step controlled carbonization. This method simplifies the preparation of rattle-shaped microspheres from sandwich microspheres. Fe@C microspheres exhibit excellent microwave absorbing properties. The morphology and composition of the product are investigated depending on the effects of carbonization temperature, time and thickness of the RF layer. When the carbonization temperature is 700 °C, the carbonization time is 12 h and the polymer shell thickness is 62 nm, the inner hollow Fe3O4 is completely reduced to Fe. The absorption properties of the materials are compared before and after the reduction of Fe3O4. Both Fe@C-12 and Fe3O4@C-700 show excellent absorbing properties. When the filler content is 50%, the maximum reflection loss (RLmax) of the rattle-shaped Fe@C microspheres is −50.15 dB, and the corresponding matching thickness is 3.5 mm. At a thickness of 1.7 mm, the RLmax of Fe3O4@C-700 is −44.42 dB, which is slightly worse than that of Fe@C-12. Both dielectric loss and magnetic loss play a vital role in electromagnetic wave absorption. This work prepares rattle-shaped absorbing materials in a simple way, which has significance for guiding the construction of rattle-shaped materials.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3