Abstract
Titania precursor films were electrosprayed on a quartz glass substrate, which was pre-modified with an ultra-thin film obtained by spin-coating a single-walled carbon nanotube (SWCNT) dispersed solution. The X-ray diffraction patterns of the thin films obtained by heat-treating the precursor films at 500 °C in air for 1 h indicated that the formed crystals were anatase. A new route to fabricate transparent thin films on the insulating substrate via electrospray deposition (ESD) was thus attained. The photoluminescence spectrum of the thin film showed a peak at 2.23 eV, assignable to the self-trapped exciton of anatase. The Raman spectrum of the thin film demonstrated that heat treatment is useful for removing SWCNTs. The thin film showed a water contact angle of 14 ± 2° even after being kept under dark conditions for 1 h, indicating a high level of hydrophilicity. Additionally, the thin film had a super-hydrophilic surface with a water contact angle of 1 ± 1° after ultraviolet light irradiation with an intensity of 4.5 mW cm−2 at 365 nm for 1 h. The importance of Ti3+ ions in the co-present amorphous phase, which was dominantly formed via the ESD process, for hydrophilicity was also clarified by means of X-ray photoelectron spectroscopy.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献