Hydrophilic Titania Thin Films from a Molecular Precursor Film Formed via Electrospray Deposition on a Quartz Glass Substrate Precoated with Carbon Nanotubes

Author:

Heita Shafudah Natangue,Nagai HirokiORCID,Suwazono Yutaka,Ozawa Ryuhei,Kudoh YukihiroORCID,Takahashi Taiju,Onuma Takeyoshi,Sato MitsunobuORCID

Abstract

Titania precursor films were electrosprayed on a quartz glass substrate, which was pre-modified with an ultra-thin film obtained by spin-coating a single-walled carbon nanotube (SWCNT) dispersed solution. The X-ray diffraction patterns of the thin films obtained by heat-treating the precursor films at 500 °C in air for 1 h indicated that the formed crystals were anatase. A new route to fabricate transparent thin films on the insulating substrate via electrospray deposition (ESD) was thus attained. The photoluminescence spectrum of the thin film showed a peak at 2.23 eV, assignable to the self-trapped exciton of anatase. The Raman spectrum of the thin film demonstrated that heat treatment is useful for removing SWCNTs. The thin film showed a water contact angle of 14 ± 2° even after being kept under dark conditions for 1 h, indicating a high level of hydrophilicity. Additionally, the thin film had a super-hydrophilic surface with a water contact angle of 1 ± 1° after ultraviolet light irradiation with an intensity of 4.5 mW cm−2 at 365 nm for 1 h. The importance of Ti3+ ions in the co-present amorphous phase, which was dominantly formed via the ESD process, for hydrophilicity was also clarified by means of X-ray photoelectron spectroscopy.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3