The Characterization of Running-In Coatings on the Surface of Tin Bronze by Electro-Spark Deposition

Author:

Zhang ZhengchuanORCID,Konoplianchenko IevgenORCID,Tarelnyk Viacheslav,Liu Guanjun,Du Xin,Yu Hua

Abstract

Antifriction materials, such as silver, copper, Babbitt B83, and graphene oxide (GO), were used to prepare running-in coatings on the surface of bronze QSn10-1 by electro-spark deposition (ESD). The analyses of mass transfer, roughness, thickness, morphology, composition, nanoindentation, and tribological properties of the coatings were investigated. The results showed that the running-in coatings were dense with refined grains that were uniformly distributed and in a metallurgical bond state with the tin bronze substrate. At optimum process parameters, the mass transfer was 244.2 mg, the surface roughness was 15.9 μm, and the thickness of the layers was 160 μm. The diffraction peaks clearly indicated the phases corresponding to α-Sn, SbSn, Cu6Sn5, and Cu, and a phase of Ag3Sn appeared. The modulus and the hardness of the running-in coatings were 24.9% and 14.2% of the substrate, and the deformation ratio of the coatings was 10.2% higher than that of the substrate. The friction coefficient of the running-in coatings was about 0.210 after the running-in stage, which was 64.8% of that of the substrate (0.324). The main wear mechanism of the running-in coatings under optimal process parameters is plastic deformation, scratching, and slight polishing. The running-in coating deformation under the action of high specific loads provides the automatic adjustment of parts and compensation for manufacturing errors.

Funder

The Ministry of Education and Science of Ukraine

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3