Author:
Sun Fuzhen,Cai Keqian,Li Xiaoxu,Pang Ming
Abstract
To further improve the hardness of the laser cladding layer on the surface of the vermicular graphite cast iron, the structural parameters of the laser cladding Co-base were designed and optimized, and the properties of the clad layer were evaluated using optical microscopy (OM), scanning electron microscopy (SEM), energy spectroscopy (EDS), X-ray diffractometer (XRD), electrochemical workstation, and friction wear equipment. The results show that the average hardness of the molten layer of Ni and Co-based composite cladding layer is 504 HV0.5, which is 0.64 times that of the Co-based cladding layer due to the combined factors of Ni-Cr-Fe equivalent to the dilution of the Ni-based cladding layer to the Co-based cladding layer. Due to the potential difference of the Ni, Cr, and Co elements on the surface of the cladding layer, the self-corrosion potential of the Ni and Co-based composite cladding layer is 1.08 times that of the Co-based cladding layer, and the self-corrosion current density is 0.51 times. Laser cladding Co-based cladding layer has high corrosion resistance. Under the influence of plastic deformation and oxidative wear of the cladding layer of the Ni and Co-based composite cladding layer, the wear amount of the cladding layer of the Ni and Co-based composite cladding layer is less.
Funder
China Science and Technology Exchange Center
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献