Comparison of the Erosive Wear Resistance of Ductile Cast Iron Following Laser Surface Melting and Alloying

Author:

Górka Jacek1ORCID,Lont Aleksandra1ORCID,Janicki Damian1ORCID,Poloczek Tomasz1ORCID,Rzeźnikiewicz Agnieszka1

Affiliation:

1. Welding Department, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego Street 18A, 44-100 Gliwice, Poland

Abstract

This article presents research results on the influence of the laser surface melting and alloying processes on the erosive wear resistance of ductile cast iron. For the research, an EN-GJS 350-22 ductile cast iron surface was laser-melted and laser-alloyed with titanium powder in an argon and nitrogen atmosphere. Solid-particle erosion tests were carried out on the laser-melted and -alloyed surface layers and the base material according to the ASTM G76-04 standard with 30° and 90° impingement angles. The erosive wear resistance results were correlated with Vickers hardness and microstructural test results with the use of SEM (scanning electron microscopy), TEM (transmission electron microscopy), EDS (energy dispersive spectroscopy), and XRD (X-ray diffraction). The mechanisms of erosive wear were also analyzed for the laser-treated surface layers and the base material. The research showed that the laser melting and alloying processes with titanium powder had a positive effect on the hardness and erosive wear resistance of the ductile cast iron surface due to microstructure modification. Moreover, despite the lower hardness of the laser-alloyed surface layers, their composite microstructure had a positive impact on the erosive wear resistance in comparison to the laser-melted surface layers.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3