Effect of Nitrogen Flow Rate on Microstructure and Optical Properties of Ta2O5 Coatings

Author:

Chao Rui,Cai Haichao,Li Hang,Xue Yujun

Abstract

Ta2O5 coatings were prepared on highly transparent quartz glass and silicon wafer substrates using RF magnetron sputtering technology. Different flow rates (10%, 15%, and 20%) of N2 were introduced during the sputtering process while keeping the total sputtering gas flow rate constant at 40 sccm. The effects of N2 flow rate on the phase structure, micro-morphology, elemental composition, and optical properties of Ta2O5 coatings were investigated. The coatings were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), electron energy spectroscopy (EDS), and spectrophotometry. The results show that the phase composition of the coating is an amorphous structure when the sputtering gases are pure argon and nitrogen-argon mixed gases, respectively. The coating after the passage of N2 is mainly composed of Ta, N, and O, which confirms that the deposited coating is a composite coating of Ta oxide and nitride. The EDS spectrum indicates that the ratio of O to Ta atoms in the composite coating is greater than the stoichiometric value of 2.5. It may be related to the deposition rate of Ta atoms during the preparation process. The optical properties show that the average transmittance of the composite coating is greater than 75% and the maximum light transmission is 78.03%. The transmittance in the visible range of Ta2O5 coatings prepared under nitrogen-argon mixed gas sputtering conditions is greater than that of those prepared under pure argon sputtering conditions. Finally, the coatings optical direct band gap Edg and indirect band gap Eig are obtained.

Funder

National Key R&D Program of China

National Defense Industrial Technology Development Program

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3