Depth Profile Analysis of the Modified Layer of Poly(vinyltrimethylsilane) Films Treated by Direct-Current Discharge

Author:

Piskarev Mikhail,Skryleva ElenaORCID,Gilman Alla,Senatulin Boris,Zinoviev Alexander,Syrtsova Daria,Teplyakov Vladimir,Kuznetsov AlexanderORCID

Abstract

Previously, we found that modification of the membrane surface from polyvinyltrimethylsilane (PVTMS) by treatment with low-temperature plasma induced by low pressure DC discharge leads to a significant increase in gas separation characteristics. To understand the mechanism of this phenomenon, in this article XPS combined with precision etching 10 keV beam of Ar2500+ clusters was used for depth profiling of PVTMS spin-coated films before and after DC discharge treatment. The etching craters depths were measured by stylus surface profiler. The average etching rate of the untreated PVTMS film by Ar2500+ clusters was defined (230 nm/min). It was found that the low temperature plasma treatment of PVTMS leads to a sharp increase in the oxygen concentration on a surface with a simultaneous decrease in the carbon content. The experimental data obtained indicate also that the treatment of PVTMS film by plasma leads not only to a change in the chemical structure of the surface, but also to the formation of a gradient subsurface layer with a thickness of about 50 nm.

Funder

Russian Foundation for Basic Research

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference22 articles.

1. White paper on the future of plasma science and technology in plastics and textiles

2. Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials, and Biomedical Fields,2019

3. The future for plasma science and technology

4. New developments in surface functionalization of polymers using controlled plasma treatments

5. Surface Modification of Polymers,2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3