Microstructure and Mechanical Properties of Multiple In-Situ-Phases-Reinforced Nickel Composite Coatings Deposited by Wide-Band Laser

Author:

Ma Qunshuang,Dong Zhengxue,Ren Nannan,Hong Shenlizhi,Chen Jinxing,Hu Lei,Meng Wei

Abstract

Metal matrix ceramic composites (MMCs) are widely applied materials in surface engineering due to their high hardness and excellent wear resistance. Recently, various MMCs have been successfully fabricated by a promising method named direct laser deposition. In this work, nickel-based hard surface coatings reinforced with multiple in-situ phases were deposited by wide-band laser. The strengthened phases were synthesized by varied content of Ti and B4C precursor powders. The microstructure evolution, phase constitution and mechanical properties of the designed coatings were investigated. Results indicated the B4C were decomposed and free C and B atoms were released in a molten pool. Multiple secondary phases such as TiC, Cr7C3, Cr23C6, TiB and CrB were in-situ synthesized. As the content of precursor Ti and B4C powders increased, the microstructure of the laser-clad coatings was greatly refined due to the plentiful in-situ phases. Mechanical properties of the coatings revealed the maximum elastic modulus and microhardness reached 247 and 7.18 GPa in the experiment group. Friction tests indicated the average friction coefficient of optimized coating was about 0.50.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3