Comparison of the Microstructure Evolution and Wear Resistance of Ti6Al4V Composite Coatings Reinforced by Hard Pure or Ni-plated Cubic Boron Nitride Particles Prepared with Laser Cladding on a Ti6Al4V Substrate

Author:

Fu Shuren,Yang Lijing,Wang Pei,Wang Shaopeng,Li Zhengxian

Abstract

Titanium alloy is a major structural material with excellent high specific strength in aerospace applications. Cubic boron nitride (cBN) is a synthetic wear-resistant material with high hardness, similar to that of diamond, that is used in mechanical cutting and grinding. In addition, the thermal stability of cubic boron nitride particles is much better than that of diamond. In order to further enhance the wear resistance of the Ti6Al4V alloy, the laser cladding (LC) technology characteristics of metallurgical bonding were used to prepare cubic boron nitride/Ti6Al4V and Ni-plated cubic boron nitride/Ti6Al4V composite coatings on Ti6Al4V substrates in this paper. However, in the laser molten pool, it is difficult to retain the raw properties of cubic boron nitride particles under laser radiation. Both composite coatings were analyzed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The microstructures and interface bonding between cubic boron nitride particles and the Ti6Al4V matrix were examined using SEM, and the wear resistance and the worn track morphology of the composite coatings were evaluated using the ball-on-disc wear test and step profiler (WTM-2E). The results indicated that the Ni-plated cubic boron nitride/Ti6Al4V composite coating showed fewer thermal defects in comparison with the cubic boron nitride/Ti6Al4V coating. The Ni plating on the surface of cubic boron nitride particles was able to avoid the generation of thermal cracking of the cubic boron nitride particles in the composite coating. The TiN reaction layer was formed between the cubic boron nitride particles and Ti6Al4V matrix, which effectively prevented the further decomposition of the cubic boron nitride particles. The XRD and XPS results confirmed that the TiN reaction layer formed between the cubic boron nitride particles and Ti6Al4V. The Ni plating on the surface of the cubic boron nitride particles was also beneficial for increasing the wear resistance of the composite coating.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Postdoctoral Science Foundation of China

Shaanxi Province Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3