Abstract
The practical significance of ferroelectric domains and various domain boundaries has been growing steadily in recent years. In this work, various domain structures were written with an electron beam through a thin aluminum film on a −Z cut of bulk lithium niobate. The use of relatively low accelerating voltages (5 and 10 kV) and the grounding of the surface metallization made it possible to write periodic structures (1D and 2D) on large areas with domain sizes ≤1 μm. Selective domain etching and AFM in contact mode were used to observe various domain shapes obtained in the experiments. An unusual feature of the submicron-sized domains was needle-like vertices. Importantly, the vertices of the domains were deepened relative to the irradiated surface. It was found that the size and proximity of the irradiated regions to each other in the patterns used can significantly change the upper part of the domains. The experimental data were analyzed and discussed taking into account the computer simulation of the spatial field distribution of injected electron beam charges. The obtained results contribute to the development of controlled writing of submicron-sized domain structures using an electron beam.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献