Control of Endogenous Phosphorus Release at the Sediment–Water Interface by Lanthanum-Modified Fly Ash

Author:

Pan Ying,Liu Gang,Chai Beibei,Lei Xiaohui,He Lixin,Cheng Shuailong,Wang Yijie,Chen Wenlong,Li Simin,Chen Liang,Chen Bin

Abstract

This study optimizes the modification and granulation of fly ash to make it more stable at the sediment–water interface. Through laboratory simulations, the modified fly ash pellets were optimally granulated to cover the sediment–water interface, and its control effect and mechanism were evaluated. The results showed that the phosphorus adsorption effect of lanthanum-modified fly ash was 34% and 40% higher compared with those of acid-modified and alkali-modified fly ash, respectively, with the phosphorus adsorption effect reaching 85%. The best dosing ratio was about 0.3 g/L. Adsorption was affected by pH and was more effective under weak alkalinity, close to the Langmuir adsorption model, which was consistent with the unimolecular layer adsorption characteristics and the presence of chemisorption and physical adsorption. The saturation adsorption amount of phosphate by lanthanum-modified fly ash was 8.89 mg/g. The optimized granulation conditions for lanthanum-modified fly ash pellets were a fly ash/montmorillonite ratio of 7:3, a roasting temperature of 900 °C, a roasting time of 4 h, and a particle size of 3 mm. After 20 days, the orthophosphate removal rate was more than 60% higher than that of the control group, with a total phosphorus removal rate of 43%. After covering for 60 days, active phosphorus in the surface layer of the sediment was gradually transformed into a stable phosphorus form, with calcium phosphorus accounting for 70% of the total inorganic phosphorus. The ability of the sediment to release phosphorus to the overlying water body was also significantly weakened. Meanwhile, the total phosphorus removal rate in the overlying water at the sediment–water interface reached more than 40%, and orthophosphate removal reached more than 60%, indicating an obvious phosphorus control effect. Transmission electron microscopy analysis showed that lanthanum was present at locations enriched with elemental phosphorus and was adsorbed onto the material surface. Therefore, lanthanum-modified fly ash pellets are a promising in situ phosphorus control agent with good endogenous phosphorus pollution control abilities in eutrophic water bodies.

Funder

the Natural Science Foundation of Hebei Province

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference61 articles.

1. Content and solubility of phosphorus in atmospheric particulate matter;Ming;Min. Res. Geochem. B,2022

2. Research progress of metal (hydrogen) oxide-based phosphorus removal adsorbents;Ting;Water Treat. Technol.,2021

3. Nonlinear Water Quality Response to Numerical Simulation of In Situ Phosphorus Control Approaches

4. Eutrophication of water bodies and its prevention and control measures;Xiurong;Lea. Mak. Environ. Technol.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3