Integrating Fly Ash-Controlled Surface Morphology and Candle Grease Coating: Access to Highly Hydrophobic Poly (L-lactic Acid) Composite for Anti-Icing Application

Author:

Jiang Zhiqiang12,Xue Bai123ORCID,Mai Xiaoping12,Wu Changmei12,Zeng Lingjun12,Xie Lan123,Zheng Qiang4

Affiliation:

1. Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China

2. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China

3. National Engineering Research Center for Compounding and Modification of Polymer Materials, National and Local Joint Engineering Research Center for Functional Polymer Membrane Materials and Membrane Processes, Guiyang 550014, China

4. Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

New ways of recycling fly ash are of great significance for reducing the environmental pollution. In this work, biodegradable hydrophobic poly (L-lactic acid)/fly ash composites for anti-icing application were successfully fabricated via a facile solvent-volatilization-induced phase separation approach. A silane coupling agent of 3-(Trimethoxysilyl) propyl methacrylate was used to decorate a fly ash surface (FA@KH570) for strengthening the interface bonding between fly ash and poly (L-lactic acid). Moreover, FA@KH570 could obviously enhance the crystallinity of poly (L-lactic acid) (PLLA)/FA@KH570 composites, which accelerated the conversion from the liquid-liquid to the liquid-solid phase separation principle. Correspondingly, the controllable surface morphology from smooth to petal-like microspheres was attained simply by adjusting the FA@KH570 content. After coating nontoxic candle grease, the apparent contact angle of 5 wt% PLLA/FA@KH570 composite was significantly increased to an astonishing 151.2°, which endowed the composite with excellent anti-icing property. This strategy paves the way for recycling waste fly ash and manufacturing hydrophobic poly (L-lactic acid) composite for potential application as an anti-icing material for refrigerator interior walls.

Funder

National Natural Science Foundation of China

Guizhou Provincial Science and Technology Project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference56 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3