Fabrication of MnCoS Thin Films Deposited by the SILAR Method with the Assistance of Surfactants and Supercapacitor Properties

Author:

Yang Qifan1,Chen Qianhui1,Gong Fuzhong12,Li Yanlin12

Affiliation:

1. School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China

2. Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Nanning 530004, China

Abstract

Compact MnCoS thin films on a nickel foam (NF) substrate were prepared by successive ionic layer adsorption and a reaction (SILAR) method, and two surfactants (SDS and CTAB) were used to improve the wettability of the NF. The MnCoS thin films were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The supercapacitive properties were evaluated by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and impedance spectroscopy (EIS). The results show that while the NF was first dipped in surfactant solution, followed by a mixture of Mn2+ and Co2+ or a Na2S solution, the load and density of the MnCoS on the NF’s surface significantly increased and delivered a much higher specific capacitance than that of the MnCoS thin film formed without the assistance of surfactants, which were 2029.8 F g−1 (MnCoS-CTAB), 1500.3 F g−1 (MnCoS-SDS), and 950.4 F g−1 (MnCoS-H2O) at a current density of 1 A g−1 in 3 M KOH aqueous solution. When the current density increased to 10 A g−1, the MnCoS-CTAB with the highest specific capacitance exhibited a capacitance of 1371.9 F g−1, with a 71% capacity retention up to 1000 cycles, showing a good rate performance and cycle stability.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3