Abstract
Cadmium-derived materials are highly demanded for optoelectronics applications, and the scientific community has widely worked in different ways to develop them. In this research, the optimization of CdCO3 films using a chemical bath deposition (CBD) method at different deposition times (10, 11, and 12 h) is reported. The intention to optimize CdCO3 films is in order to propose it as a precursor to produce different types of cadmium-derived semiconductors such as CdSe, CdTe, and CdO. The obtained films were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, optical absorption by diffuse reflectance, scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The results provide evidence that CdCO3 films were effectively synthesized, featuring a rhombohedral crystalline structure with a preferential plane (104), and crystallite sizes were 65, 69, and 87 nm for the deposited samples at 10, 11, and 12 h, respectively. Surface morphology analysis revealed microstructures around 3–5 μm, with a deltoid shape, agglomerated and distributed randomly for all samples. The bandgap obtained was 3.78 eV for all samples.
Funder
Universidad Estatal de Sonora
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献