Wear Resistance Mechanism of Sub-Nano Cu3P Phase Enhanced the Cu-Pb-Sn Alloy

Author:

Ren Xiaoyan,Zhang Guowei,Xu Hong,Wang Zhaojie,Liu Yijun

Abstract

High Cu-Pb-Sn, as the material for bimetallic cylinder block, is widely used in the selection of wear-resistant parts due to its excellent wear reduction, thermal conductivity, fatigue resistance, and strong bearing capacity, such as bearings and bearing bushes, aerospace pump rotor, turbine and guide plate, etc. However, because its wear resistance is not enough to meet the harsh conditions of high temperature, high speed, and heavy load, the research on high wear resistance Cu-Pb-Sn materials has important theoretical significance and application value for the application of bimetallic materials. ZCuPb20Sn5 alloy was taken as the research object to analyze the influence mechanism of its different microstructure and mechanical properties on the friction and wear properties of alloy materials. Friction experiments under two conditions of oil lubrication and dry friction were carried out on the MMW-1A pin-on-disc friction and wear testing machine. The wear resistance and wear mechanism of ZCuPb20Sn5alloy under the action of Cu3P were discussed, and a high wear-resistant Cu-Pb-Sn alloy for bimetal cylinder block was prepared. The results show that with the increase of P content, both the friction coefficient and wear rate decrease, and the wear reduction of ZCuPb20Sn5 alloy increases. Under oil lubrication conditions, the friction coefficient decreases by 21.4% and the wear rate decreases by 85.5% compared with that without adding P. The friction-reducing and wear-resistant properties of ZCuPb20Sn5 alloy materials are increased. In dry friction and oil lubrication, the mass wear amount of ZCuPb20Sn5 alloy material decreases with the increase of P element addition, and the change rule of alloy wear amount is consistent under the two methods. In the process of friction and wear, adhesive wear occurs, and the wear amount of the alloy material increases. With the increase of P content, the lead particles are refined and evenly distributed, which promotes the formation of a uniform self-lubricating lead film during the friction process and reduces the degree of adhesive wear. The appearance of Cu3P reduces the contact area of the friction surface and weakens the adhesive wear, so the wear rate is reduced.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference24 articles.

1. Development. Characteristics and selection principles of powder metallurgy self-lubricating bearings in main engine manufacturing;Li;Powder Metall. Ind.,2002

2. The improvement of friction bearing manufacturing technology by using copper alloy

3. Sintered Metal Friction Materials;Yang;Mech. Eng. Mater.,1995

4. Anti-friction properties of Cu10Sn-based composite containing nanometer diamond particles

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3