Microstructure and Oxidation Behavior of Metal-Modified Mo-Si-B Alloys: A Review

Author:

Yu Laihao,Shen Fuqiang,Fu Tao,Zhang YingyiORCID,Cui Kunkun,Wang Jie,Zhang Xu

Abstract

With the rapid development of the nuclear industry and the aerospace field, it is urgent to develop structural materials that can work in ultra-high temperature environments to replace nickel-based alloys. Mo-Si-B alloys are considered to have the most potential for new ultra-high temperature structural material and are favored by researchers. However, the medium-low temperature oxidizability of Mo-Si-B alloys limits their further application. Therefore, this study carried out extensive research and pointed out that alloying is an effective way to solve this problem. This work provided a comprehensive review for the microstructure and oxidation resistance of low silicon and high silicon Mo-Si-B alloys. Moreover, the influence of metallic elements on the microstructure, phase compositions, oxidation kinetics and behavior of Mo-Si-B alloys were also studied systematically. Finally, the modification mechanism of metallic elements was summarized in order to obtain Mo-Si-B alloys with superior oxidation performance.

Funder

Anhui Province Science Foundation for Excellent Young Scholars

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3